GAN Scenarios at BNL: RHIC, LHC, SNS

Todd Satogata, Accelerator Physics/Operations Analysis

• "Local" RHIC Operations/Experiment Scenarios

- Integrate RHIC ops, experiments, outlying support buildings
- Near-term start time: 2–4 months

• LHC/RHIC Instrumentation Collaboration Scenarios

- CERN remote studies of test LHC instrumentation in RHIC
- Medium-term start time: 4–18 months

• SNS Startup Scenarios

- Remote diagnosis and commissioning of SNS ring
- Long-term start time: 1–3 years

Observations

- Collaborative tools are essential for all three scenarios
- Short-term more social, longer-term more technical
- Each scenario naturally builds on previous scenarios
- "Simple" collaborative tools like electronic $logs \Rightarrow long$ latencies

RHIC Operations/Experiment Integration

• Improve communication efficiency in RHIC operations

- Main control, four experiments, instrumentation and RF buildings
- Broadcast web screens, elog, voice annunciators in place
- Average shift includes 16–18 shift workers at 6 locations
- Minimize inherent inefficiencies of second-hand information
- Allow remote observation of shift change meetings

• Mini-scenario 1: Dumping collider store

- MCR: Actively notify all locations to coordinate dump time
- Inquisitive phone calls from experiments are distractions
- Experiments want ways to passively know when setup problems occur

• Mini-scenario 2: Beam study periods

- Often need to compare/discuss screens/scopes from several locations
- Currently place copies in elog (when possible) and discuss over phone
- Desire continuous background voice connections with remote locations

LHC Instrumentation Collaboration

• Testing LHC instrumentation in RHIC during beam studies

- Scheduled study times but ad-hoc visual/data-intensive meetings
- Controlled secure narrow/deep controls access by CERN personnel
- Limited collaborative environment training required
- Shared data files, analysis codes and displays
- \Rightarrow A secure interlab extension of p. 2, mini-scenario 2

• Instrumentation tests routinely push boundaries of accelerators

- Objectives of studies are often improvisational during learning
- Just-in-time analysis: integration of many different data sources
- But often moves to "take data now, analyze later" approach
- \Rightarrow Ranges from very improvisational to very procedural

• Mini-scenario 1: Phaselock loop tunemeter commissioning

- Shared DSP/analysis software development; all software located at BNL
- Access to system setup and data shared by BNL/CERN personnel
- Read-only, stripchart access to other relevant instrumentation
- Hardware duplication between sites: test at CERN, test/live at BNL

SNS Startup and Ring Commissioning

- BNL experts responsible for SNS ring design, instrumentation
 - Experts may be 24/7 on-call, requiring access when granted
 - Extensive collaborative environment training required
 - Controlled secure broad/deep controls access by BNL personnel
- Mini-scenario 1: Power supply hardware examination/diagnosis
 - Requires coordination of on-site and off-site engineers
 - "Shoulder-riding" telepresence, bidirectional audio
 - Perhaps a necessary scenario for responsibility transfer
- Mini-scenario 2: Shared-site commissioning
 - Transfer of facility controls between labs for commissioning
 - Still requires site support and supervision
 - Potentially includes all aspects of remote operations

One last social engineering thought...

• How do we share champagne between distant control rooms?

